Visual Tools
Calculators
Tables
Mathematical Keyboard
Converters
Other Tools


Supplement Angle Identities

Supplement Angle Identities

FunctionFormulaRadian FormDescription
sin(180° - θ)sinθ\sin\thetasin(π - θ) = sin θSine of supplement equals original sine - symmetric about 90°
cos(180° - θ)cosθ-\cos\thetacos(π - θ) = -cos θCosine of supplement equals negative cosine - reflection across y-axis
tan(180° - θ)tanθ-\tan\thetatan(π - θ) = -tan θTangent of supplement equals negative tangent - follows from sine/cosine properties
csc(180° - θ)cscθ\csc\thetacsc(π - θ) = csc θCosecant of supplement equals original cosecant - reciprocal of sine behavior
sec(180° - θ)secθ-\sec\thetasec(π - θ) = -sec θSecant of supplement equals negative secant - reciprocal of cosine behavior
cot(180° - θ)cotθ-\cot\thetacot(π - θ) = -cot θCotangent of supplement equals negative cotangent - derived from tangent property