Visual Tools
Calculators
Tables
Mathematical Keyboard
Converters
Other Tools

Logarithm Rules








Basic Binomial Identities

lawformulaexplanation
Square of Sum
(a+b)2=a2+2ab+b2(a + b)^2 = a^2 + 2ab + b^2
Square of a binomial sum
Square of Difference
(ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2
Square of a binomial difference
Cube of Sum
(a+b)3=a3+3a2b+3ab2+b3(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3
Cube of a binomial sum
Cube of Difference
(ab)3=a33a2b+3ab2b3(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3
Cube of a binomial difference
Fourth Power of Sum
(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4
Fourth power of a binomial sum
Fifth Power of Sum
(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5(a + b)^5 = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5
Fifth power of a binomial sum
Fifth Power of Difference
(ab)5=a55a4b+10a3b210a2b3+5ab4b5(a - b)^5 = a^5 - 5a^4b + 10a^3b^2 - 10a^2b^3 + 5ab^4 - b^5
Fifth power of a binomial difference

General Binomial Expansions

lawformulaexplanation
General Binomial Theorem
(a+b)n=k=0nC(n,k)ankbk(a + b)^n = \sum_{k=0}^{n} C(n,k) a^{n-k} b^k
General form where C(n,k) = n!/(k!(n-k)!)

Multinomial Expansions

lawformulaexplanation
Trinomial Square
(a+b+c)2=a2+b2+c2+2ab+2bc+2ac(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ac
Square of a trinomial
Trinomial Cube
(a+b+c)3=a3+b3+c3+3(a2b+ab2+a2c+ac2+b2c+bc2)+6abc(a + b + c)^3 = a^3 + b^3 + c^3 + 3(a^2b + ab^2 + a^2c + ac^2 + b^2c + bc^2) + 6abc
Cube of a trinomial

Difference of Squares and Higher Powers

lawformulaexplanation
Difference of Squares
a2b2=(a+b)(ab)a^2 - b^2 = (a + b)(a - b)
Factorization of difference of squares
Difference of Fourth Powers
a4b4=(a2+b2)(a2b2)=(a2+b2)(a+b)(ab)a^4 - b^4 = (a^2 + b^2)(a^2 - b^2) = (a^2 + b^2)(a + b)(a - b)
Factorization of difference of fourth powers

Sums and Differences of Powers

lawformulaexplanation
Sum of Cubes
a3+b3=(a+b)(a2ab+b2)a^3 + b^3 = (a + b)(a^2 - ab + b^2)
Factorization of sum of cubes
Difference of Cubes
a3b3=(ab)(a2+ab+b2)a^3 - b^3 = (a - b)(a^2 + ab + b^2)
Factorization of difference of cubes
Sum of Fourth Powers
a4+b4=(a2+2ab+b2)(a22ab+b2)a^4 + b^4 = (a^2 + \sqrt{2}ab + b^2)(a^2 - \sqrt{2}ab + b^2)
Factorization of sum of fourth powers
Sum of Fifth Powers
a5+b5=(a+b)(a4a3b+a2b2ab3+b4)a^5 + b^5 = (a + b)(a^4 - a^3b + a^2b^2 - ab^3 + b^4)
Factorization of sum of fifth powers
Difference of Fifth Powers
a5b5=(ab)(a4+a3b+a2b2+ab3+b4)a^5 - b^5 = (a - b)(a^4 + a^3b + a^2b^2 + ab^3 + b^4)
Factorization of difference of fifth powers
General Difference of Powers
anbn=(ab)(an1+an2b+...+abn2+bn1)a^n - b^n = (a - b)(a^{n-1} + a^{n-2}b + ... + ab^{n-2} + b^{n-1})
General factorization of difference of nth powers
General Sum of Odd Powers
an+bn=(a+b)(an1an2b+...abn2+bn1)a^n + b^n = (a + b)(a^{n-1} - a^{n-2}b + ... - ab^{n-2} + b^{n-1}) when n is odd
General factorization of sum of odd powers

Special Identities

lawformulaexplanation
Sophie Germain Identity
a4+4b4=(a2+2ab+2b2)(a22ab+2b2)a^4 + 4b^4 = (a^2 + 2ab + 2b^2)(a^2 - 2ab + 2b^2)
Special factorization for fourth powers
Sum of Squares with Cross Term
a4+a2b2+b4=(a2+ab+b2)(a2ab+b2)a^4 + a^2b^2 + b^4 = (a^2 + ab + b^2)(a^2 - ab + b^2)
Alternative factorization of sum-like fourth power expression
Symmetric Sum Identity
a2+b2+c2abbcca=12[(ab)2+(bc)2+(ca)2]a^2 + b^2 + c^2 - ab - bc - ca = \frac{1}{2}[(a-b)^2 + (b-c)^2 + (c-a)^2]
Symmetric expression in terms of pairwise differences
Sum of Squares Plus Difference
(a+b)2+(ab)2=2(a2+b2)(a + b)^2 + (a - b)^2 = 2(a^2 + b^2)
Sum of squared sum and squared difference
Difference of Squared Sum and Difference
(a+b)2(ab)2=4ab(a + b)^2 - (a - b)^2 = 4ab
Difference between squared sum and squared difference
Complex Factorization
a2+b2=(a+bi)(abi)a^2 + b^2 = (a + bi)(a - bi)
Factorization using complex numbers

Factoring Identities

lawformulaexplanation
Quadratic Factoring
x2+(a+b)x+ab=(x+a)(x+b)x^2 + (a + b)x + ab = (x + a)(x + b)
Standard quadratic factoring form
General Quadratic Roots
ax2+bx+c=a(xr1)(xr2)ax^2 + bx + c = a(x - r_1)(x - r_2) where r1,r2r_1, r_2 are roots
General quadratic factorization using roots

Basic Algebraic Properties

lawformulaexplanation
Distributive Property
a(b+c)=ab+aca(b + c) = ab + ac
Basic distributive property
Product of Binomials
(a+b)(c+d)=ac+ad+bc+bd(a + b)(c + d) = ac + ad + bc + bd
Product of two binomials
Product of Trinomials
(a+b+c)(d+e+f)=ad+ae+af+bd+be+bf+cd+ce+cf(a + b + c)(d + e + f) = ad + ae + af + bd + be + bf + cd + ce + cf
Product of two trinomials