Visual Tools
Calculators
Tables
Mathematical Keyboard
Converters
Other Tools


Half Angle Identities

Other Trigonometric Tables

Trigonometric Functions of Special Angles
Inverse Trigonometric Functions
Trigonometric Reduction Formulas
Double Angle Formulas
Triple Angle Formulas

Half Angle Identities

FunctionFormulaDescription
sin(θ/2)±1cosθ2\displaystyle\pm\sqrt{\frac{1 - \cos\theta}{2}}Plus or minus depends on quadrant of θ/2 - derived from cosine double angle
cos(θ/2)±1+cosθ2\displaystyle\pm\sqrt{\frac{1 + \cos\theta}{2}}Sign determined by which quadrant θ/2 falls in - always check the angle range
tan(θ/2)±1cosθ1+cosθ\displaystyle\pm\sqrt{\frac{1 - \cos\theta}{1 + \cos\theta}}Square root form - can also be expressed as (1-cosθ)/sinθ or sinθ/(1+cosθ)
tan(θ/2)1cosθsinθ\displaystyle\frac{1 - \cos\theta}{\sin\theta}Alternative form - no ambiguous sign, more practical for calculations
tan(θ/2)sinθ1+cosθ\displaystyle\frac{\sin\theta}{1 + \cos\theta}Second alternative form - equivalent to previous, choose based on given information
csc(θ/2)±21cosθ\displaystyle\pm\sqrt{\frac{2}{1 - \cos\theta}}Reciprocal of sine half-angle - undefined when cosθ = 1
sec(θ/2)±21+cosθ\displaystyle\pm\sqrt{\frac{2}{1 + \cos\theta}}Reciprocal of cosine half-angle - undefined when cosθ = -1
cot(θ/2)±1+cosθ1cosθ\displaystyle\pm\sqrt{\frac{1 + \cos\theta}{1 - \cos\theta}}Square root form of cotangent - also equals (1+cosθ)/sinθ or sinθ/(1-cosθ)