Visual Tools
Calculators
Tables
Mathematical Keyboard
Converters
Other Tools


Half Angle Identities

Half Angle Identities

FunctionFormulaDescription
sin(θ/2)±1cosθ2\displaystyle\pm\sqrt{\frac{1 - \cos\theta}{2}}Plus or minus depends on quadrant of θ/2 - derived from cosine double angle
cos(θ/2)±1+cosθ2\displaystyle\pm\sqrt{\frac{1 + \cos\theta}{2}}Sign determined by which quadrant θ/2 falls in - always check the angle range
tan(θ/2)±1cosθ1+cosθ\displaystyle\pm\sqrt{\frac{1 - \cos\theta}{1 + \cos\theta}}Square root form - can also be expressed as (1-cosθ)/sinθ or sinθ/(1+cosθ)
tan(θ/2)1cosθsinθ\displaystyle\frac{1 - \cos\theta}{\sin\theta}Alternative form - no ambiguous sign, more practical for calculations
tan(θ/2)sinθ1+cosθ\displaystyle\frac{\sin\theta}{1 + \cos\theta}Second alternative form - equivalent to previous, choose based on given information
csc(θ/2)±21cosθ\displaystyle\pm\sqrt{\frac{2}{1 - \cos\theta}}Reciprocal of sine half-angle - undefined when cosθ = 1
sec(θ/2)±21+cosθ\displaystyle\pm\sqrt{\frac{2}{1 + \cos\theta}}Reciprocal of cosine half-angle - undefined when cosθ = -1
cot(θ/2)±1+cosθ1cosθ\displaystyle\pm\sqrt{\frac{1 + \cos\theta}{1 - \cos\theta}}Square root form of cotangent - also equals (1+cosθ)/sinθ or sinθ/(1-cosθ)