Visual Tools
Calculators
Tables
Mathematical Keyboard
Converters
Other Tools


Double Angle Identities

Double Angle Identities of Main Trigonometric Functions

FunctionFormulaDescription
sin(2θ)2sinθcosθ2\sin\theta\cos\thetaProduct of sine and cosine doubled - fundamental for wave interference
cos(2θ)cos2θsin2θ\cos^2\theta - \sin^2\thetaDifference of squares form. Also equals 2cos²θ - 1 or 1 - 2sin²θ - three equivalent expressions
tan(2θ)2tanθ1tan2θ\displaystyle\frac{2\tan\theta}{1 - \tan^2\theta}Fraction form - undefined when tan²θ = 1 (at 45°, 135°, etc.)
csc(2θ)secθcscθ2\displaystyle\frac{\sec\theta\csc\theta}{2}Reciprocal relationship - product of original secant and cosecant halved
sec(2θ)sec2θ2cos2θ1\displaystyle\frac{\sec^2\theta}{2\cos^2\theta - 1}Complex form involving both secant and cosine - used in advanced calculus
cot(2θ)cot2θ12cotθ\displaystyle\frac{\cot^2\theta - 1}{2\cot\theta}Quotient form - becomes undefined when cotθ = 0 (at 90°, 270°, etc.)