Conditional vs Total Probability
The key insight from this visualization is how conditional probability differs from total probability. Consider this scenario:
Set Region A to 0.80 and Regions B, C, D to 0.20. The total probability is:
P(Event) = 0.25(0.80) + 0.25(0.20) + 0.25(0.20) + 0.25(0.20) = 0.35
Now imagine you know you're in Region A. Your probability jumps to 0.80—more than double the total probability. If you're in any other region, your probability drops to 0.20—lower than the total.
This demonstrates why conditional information matters. The total probability 0.35 is correct if you don't know which region you're in. But once you know the region (the condition), your probability estimate changes dramatically.