Visual Tools
Calculators
Tables
Mathematical Keyboard
Converters
Other Tools

Limits Rules








Basic Limit Laws

lawformulaexplanation
Constant Rule
limxac=c\lim_{x \to a} c = c
The limit of a constant is the constant itself
Identity Rule
limxax=a\lim_{x \to a} x = a
The limit of x as x approaches a is a
Sum Rule
limxa[f(x)+g(x)]=limxaf(x)+limxag(x)\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)
The limit of a sum is the sum of the limits
Difference Rule
limxa[f(x)g(x)]=limxaf(x)limxag(x)\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)
The limit of a difference is the difference of the limits
Constant Multiple Rule
limxa[cf(x)]=climxaf(x)\lim_{x \to a} [c \cdot f(x)] = c \cdot \lim_{x \to a} f(x)
Constants can be factored out of limits
Product Rule
limxa[f(x)g(x)]=limxaf(x)limxag(x)\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)
The limit of a product is the product of the limits
Quotient Rule
limxaf(x)g(x)=limxaf(x)limxag(x)\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}
The limit of a quotient is the quotient of limits, provided denominator limit is not zero

Power and Root Limits

lawformulaexplanation
Power Rule
limxa[f(x)]n=[limxaf(x)]n\lim_{x \to a} [f(x)]^n = [\lim_{x \to a} f(x)]^n
The limit of a power is the power of the limit
Root Rule
limxaf(x)n=limxaf(x)n\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}
The limit of a root is the root of the limit, provided the root exists
Polynomial Rule
limxaP(x)=P(a)\lim_{x \to a} P(x) = P(a)
For polynomial P(x), substitute the value directly
Rational Function Rule
limxaP(x)Q(x)=P(a)Q(a)\lim_{x \to a} \frac{P(x)}{Q(x)} = \frac{P(a)}{Q(a)}
For rational functions, substitute directly if denominator is not zero

Special Theorems

lawformulaexplanation
Squeeze Theorem
If g(x)f(x)h(x)g(x) \leq f(x) \leq h(x) and limxag(x)=limxah(x)=L\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L, then limxaf(x)=L\lim_{x \to a} f(x) = L
Function squeezed between two functions with same limit has that limit
Absolute Value Rule
limxaf(x)=limxaf(x)\lim_{x \to a} |f(x)| = |\lim_{x \to a} f(x)|
The limit of absolute value is absolute value of limit, if limit exists
Composition Rule
If limxag(x)=L\lim_{x \to a} g(x) = L and ff is continuous at LL, then limxaf(g(x))=f(L)\lim_{x \to a} f(g(x)) = f(L)
Limit of composition when inner function has limit and outer is continuous

Trigonometric Limits

lawformulaexplanation
Fundamental Sine Limit
limx0sinxx=1\lim_{x \to 0} \frac{\sin x}{x} = 1
The fundamental trigonometric limit for sine
Fundamental Cosine Limit
limx01cosxx=0\lim_{x \to 0} \frac{1 - \cos x}{x} = 0
The fundamental trigonometric limit for cosine
Alternative Cosine Limit
limx01cosxx2=12\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}
Alternative form of the cosine limit
Tangent Limit
limx0tanxx=1\lim_{x \to 0} \frac{\tan x}{x} = 1
The fundamental trigonometric limit for tangent

Exponential and Logarithmic Limits

lawformulaexplanation
Natural Exponential Definition
limx(1+1x)x=e\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e
The definition of e as a limit
Alternative e Definition
limx0(1+x)1x=e\lim_{x \to 0} (1 + x)^{\frac{1}{x}} = e
Alternative form for the definition of e
Exponential Limit
limx0ex1x=1\lim_{x \to 0} \frac{e^x - 1}{x} = 1
Fundamental limit involving natural exponential
General Exponential Limit
limx0ax1x=lna\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a
Fundamental limit for exponential with base a
Natural Logarithm Limit
limx0ln(1+x)x=1\lim_{x \to 0} \frac{\ln(1 + x)}{x} = 1
Fundamental limit involving natural logarithm
General Logarithm Limit
limx0loga(1+x)x=1lna\lim_{x \to 0} \frac{\log_a(1 + x)}{x} = \frac{1}{\ln a}
Fundamental limit for logarithm with base a