Visual Tools
Calculators
Tables
Mathematical Keyboard
Converters
Other Tools

Integration Rules









Basic Integration Rules

lawformulaexplanation
Constant Rule
cdx=cx+C\int c \, dx = cx + C
The integral of a constant is the constant times x plus the constant of integration
Constant Multiple Rule
cf(x)dx=cf(x)dx\int c \cdot f(x) \, dx = c \int f(x) \, dx
Constants can be factored out of integrals
Power Rule
xndx=xn+1n+1+C\int x^n \, dx = \frac{x^{n+1}}{n+1} + C (where n1n \neq -1)
Add one to the exponent and divide by the new exponent
Sum and Difference Rule
[f(x)±g(x)]dx=f(x)dx±g(x)dx\int [f(x) \pm g(x)] \, dx = \int f(x) \, dx \pm \int g(x) \, dx
The integral of a sum/difference is the sum/difference of integrals
Special Power Rule
x1dx=1xdx=lnx+C\int x^{-1} \, dx = \int \frac{1}{x} \, dx = \ln|x| + C
The integral of one over x is the natural logarithm of absolute value of x

Trigonometric Integrals

lawformulaexplanation
Sine Integral
sin(x)dx=cos(x)+C\int \sin(x) \, dx = -\cos(x) + C
The integral of sine is negative cosine
Cosine Integral
cos(x)dx=sin(x)+C\int \cos(x) \, dx = \sin(x) + C
The integral of cosine is sine
Tangent Integral
tan(x)dx=lncos(x)+C=lnsec(x)+C\int \tan(x) \, dx = -\ln|\cos(x)| + C = \ln|\sec(x)| + C
The integral of tangent is negative natural log of absolute cosine
Cotangent Integral
cot(x)dx=lnsin(x)+C\int \cot(x) \, dx = \ln|\sin(x)| + C
The integral of cotangent is natural log of absolute sine
Secant Integral
sec(x)dx=lnsec(x)+tan(x)+C\int \sec(x) \, dx = \ln|\sec(x) + \tan(x)| + C
The integral of secant involves natural log of secant plus tangent
Cosecant Integral
csc(x)dx=lncsc(x)+cot(x)+C\int \csc(x) \, dx = -\ln|\csc(x) + \cot(x)| + C
The integral of cosecant involves negative natural log of cosecant plus cotangent
Secant Squared Integral
sec2(x)dx=tan(x)+C\int \sec^2(x) \, dx = \tan(x) + C
The integral of secant squared is tangent
Cosecant Squared Integral
csc2(x)dx=cot(x)+C\int \csc^2(x) \, dx = -\cot(x) + C
The integral of cosecant squared is negative cotangent
Secant Tangent Integral
sec(x)tan(x)dx=sec(x)+C\int \sec(x)\tan(x) \, dx = \sec(x) + C
The integral of secant times tangent is secant
Cosecant Cotangent Integral
csc(x)cot(x)dx=csc(x)+C\int \csc(x)\cot(x) \, dx = -\csc(x) + C
The integral of cosecant times cotangent is negative cosecant

Inverse Trigonometric Integrals

lawformulaexplanation
Arcsine Integral Form
11x2dx=arcsin(x)+C\int \frac{1}{\sqrt{1-x^2}} \, dx = \arcsin(x) + C
Standard form that integrates to arcsine
Arctangent Integral Form
11+x2dx=arctan(x)+C\int \frac{1}{1+x^2} \, dx = \arctan(x) + C
Standard form that integrates to arctangent
Arcsecant Integral Form
1xx21,dx=arcsecx+C\int \frac{1}{x\sqrt{x^2-1}} ,dx =arcsec|x| + C
Standard form that integrates to arcsecant of absolute x
General Arcsine Form
1a2x2dx=arcsin(xa)+C\int \frac{1}{\sqrt{a^2-x^2}} \, dx = \arcsin\left(\frac{x}{a}\right) + C
Generalized arcsine integral form with parameter a
General Arctangent Form
1a2+x2dx=1aarctan(xa)+C\int \frac{1}{a^2+x^2} \, dx = \frac{1}{a}\arctan\left(\frac{x}{a}\right) + C
Generalized arctangent integral form with parameter a

Exponential and Logarithmic Integrals

lawformulaexplanation
Natural Exponential Integral
exdx=ex+C\int e^x \, dx = e^x + C
The integral of e to the x is itself
General Exponential Integral
axdx=axln(a)+C\int a^x \, dx = \frac{a^x}{\ln(a)} + C (where a>0a > 0, a1a \neq 1)
The integral of exponential includes division by natural log of the base
Composite Natural Exponential
ef(x)f(x)dx=ef(x)+C\int e^{f(x)} f'(x) \, dx = e^{f(x)} + C
Integration by substitution with natural exponential
Composite General Exponential
af(x)f(x)dx=af(x)ln(a)+C\int a^{f(x)} f'(x) \, dx = \frac{a^{f(x)}}{\ln(a)} + C
Integration by substitution with general exponential
Reciprocal Function Integral
f(x)f(x)dx=lnf(x)+C\int \frac{f'(x)}{f(x)} \, dx = \ln|f(x)| + C
The integral of derivative over function is natural log of absolute function

Integration Techniques

lawformulaexplanation
Integration by Parts
udv=uvvdu\int u \, dv = uv - \int v \, du
Method for integrating products of functions
U-Substitution
f(g(x))g(x)dx=f(u)du\int f(g(x))g'(x) \, dx = \int f(u) \, du where u=g(x)u = g(x)
Method for integrating composite functions using substitution
Fundamental Theorem of Calculus
abf(x)dx=F(b)F(a)\int_a^b f(x) \, dx = F(b) - F(a) where F(x)=f(x)F'(x) = f(x)
Connects definite integrals with antiderivatives
Integration by Partial Fractions
P(x)Q(x)dx=(Ai(xri)ni)dx\int \frac{P(x)}{Q(x)} \, dx = \int \left(\sum \frac{A_i}{(x-r_i)^{n_i}}\right) dx
Method for integrating rational functions by decomposition